

1

Ref. Ares(2019)1461213 - 04/03/2019

 HORIZON 2020

IMMERSE

(Grant Agreement 821926)

Improving Models for Marine EnviRonment

SErvices Deliverable D7.4 Public Report

2

IMMERSE

Deliverable 7.4

Python coupling tool kit and documentation
CMCC: Laura Stefanizzi, Stefania Ciliberti, Giovanni Coppini

NOC: Thomas D. Prime, James Harle, Michela De Dominicis

1. Preamble

Task 7.3 “Prototype toolbox for seamless uptake of CMEMS products in downstream monitoring
systems” is implemented by CMCC (Italy) and NOC (UK) with the scope to design new numerical tools
able to facilitate the uptake of CMEMS products in downstream systems. It has direct link to WP8
which is devoted to demonstrating impact of NEMO and CMEMS evolutions on downstream studies,
since supporting the creation of new tools to facilitate the setup of NEMO-based configurations and
for product quality assessment.
The implementation plan is based on 3 major components:

• NEMO-Lab: it concerns the development of a Python-based suite for preparing data package

to use as input for model configurations (resp. NOC)

• Research-to-Operations Interface: it concerns the preparation of interfaces with CMEMS

model and observation products and with coastal models (resp. CMCC)

• IMMERSE Generic interface: it concerns the connection to WEkEO DIAS which is the state-of-

the-art centralized access point to Copernicus product promoted by the EU Commission

(https://www.WEkEO.eu/, further details in Section 2) for accessing/processing operational

products (resp. CMCC)

This technical document is organized as follows: Section 2 presents the scopes behind the IMMERSE
generic interfaces and the importance to connect new tools with WEkEO DIAS as final step; Section 3
presents the NEMO-Lab interface; Section 4 focuses on Research-to-Operations interface and its
deployment as generic interface to WEkEO DIAS.

2. Towards IMMERSE Generic Interfaces

The growing of new technologies for data access and analysis requires update of research tools for
easy transfer of numerical procedures in a more operational environment, able to support
downstream applications for society and business. For example, the usage of CMEMS products is
envisaged for coastal applications, in particular for the development of new models that use CMEMS
data as lateral open boundary conditions. Or, in case of modelling assessment, the user may be
interested to access insitu or satellite data from CMEMS in order to make comparison among model
results and observations collected in a certain region of interest. The way these procedures are
organized is crucial to optimize the access to data, to analyse the model results and to provide valuable
information about the ocean state in a target region. This is the main key concept T7.3 based design
and implementation of tools able to facilitate the developments of new NEMO-based model
configurations thanks to the usage of CMEMS (https://marine.copernicus.eu/) products for developing
new downstream services – including coastal ones – for monitoring and applications.
The WEkEO DIAS is an initiative promoted by the European Commission and implemented by
EUMETSAT, ECWMF and MERCATOR OCEAN to become the EU’s reference service for harmonized data
access, cloud infrastructure and expert user support. WEKEO provides virtual environments for data
processing and T7.3 started to prepare new implementations or interfaces to properly handle CMEMS

https://marine.copernicus.eu/

3

data and useful analysis for research purposes. A detailed presentation of WEkEO is provided at
https://WEkEO.eu/.
T7.3 Team based integrations on WEKEO according to high level architecture as in Figure 1. WEkEO
provides online catalogue access and harmonised data access API
(https://www.WEkEO.eu/web/guest/hda-api) to IMMERSE: on the other side, IMMERSE implements
tools for NEMO-based configurations and for processing accessed CMEMS products. IMMERSE tools
have been implemented thanks to the experience in the usage of CMEMS products and in the long
term supports the ingestion of new data from high resolution models and downstream services.
High level architecture is the result of the exchange between CMCC and NOC firstly, with a more
extensive inclusion of users/groups that are currently working on regional and/or non-conventional
NEMO configurations. A dedicated webinar and survey done in Apr 2019 highlighted the following key-
points for successful implementation of new interfaces towards a more integrated one on WEkEO:

• Methods for solving high resolution ocean-to-coastal processes by improving data access and

analysis

• Supporting product quality initiatives as implemented within CMEMS for assessing the new

configurations

• Exploiting WEkEO capacity and filling technological gaps towards more robust and easy-to-use

interfaces at research level

• Supporting transition-to-operations: concepts like interoperability and reliability are a key for

next generation of tools and configurations able to support operations (and so supported by

software engineering solutions).

Figure 1: IMMERSE Interfaces high level architecture

3. The NEMO-Lab Interface

3.1 Introduction
The NEMO-Lab interface prepares data sources/packages to use as input for new model
configurations. It builds on an existing python module - PyNEMO (https://github.com/NOC-
MSM/PyNEMO) - and extends its functionality to allow users to use:

• CMEMS DL Module: to request boundary data from a CMEMS repository using
a PyNEMO configuration file. The required subset of data is download and used by PyNEMO to
generate model boundary forcing files.

• Tide Module: to request tide forcing is applied at the boundary. A generic module has been
implemented currently for TPXO and FES tide models.

• Unit test module: to test the core and new functionality of PyNEMO

https://wekeo.eu/
https://www.wekeo.eu/web/guest/hda-api
https://github.com/NOC-MSM/PyNEMO
https://github.com/NOC-MSM/PyNEMO

4

• NCML templates: to modify templates so that different inputs and outputs can be defined, e.g.
new model from CMEMS or other sources such as CMIP or to match the requirements of other
models e.g. FVCOM.

• Integration with DIAS (WEkEO): to use PyNEMO without any requirements to install, configure
or setup PyNEMO. It would also negate the need to download data to process as this would
be accessed via DIAS.

The git repo address is https://github.com/NOC-MSM/PyNEMO/tree/IMMERSE and the online
documentation is located at https://pynemo.readthedocs.io/en/latest/index.html.

3.2 CMEMS DL Module
PyNEMO has a CMEMS downloading function incorporated within it, this will download a section of
the CMEMS global model 'GLOBAL_ANALYSIS_FORECAST_PHY_001_024-TDS' for the defined time
period in the namelist file.
To use the downloading function, the following command is used:

$ pynemo -d namelist.bdy

where the -d flag tells PyNEMO to use the CMEMS downloader and download data as specified in
the namelist file. The log file that PyNEMO produces provides a log of what the downloader does. The
CMEMS MOTU system is prone to disconnects and failure so there is download retry and error handling
built in. Most of the options required should not need editing and are there for future use in case URL's
and filenames on CMEMS change.
The options that can be configured are described in further detail in Figure 2 and commented in the
next subsections. Some of the options define the behaviour of the downloader, others define locations
to save files and others detail models and grid files to download. Finally, the spatial extent to download
is also required.

Figure 2: DL module configuration file

https://github.com/NOC-MSM/PyNEMO/tree/IMMERSE
https://pynemo.readthedocs.io/en/latest/index.html

5

3.2.1 I/O and NMCL file

The location of the NCML (NetCDF Markup Language) file is listed a string defining the source directory
or "sn_src_dir". The output folder is also defined here as "sn_dst_dir". An NCML file is an XML file
that is used to define an NetCDF dataset. An example of it’s use is to join multiple NetCDF files such as
monthly datasets so that they appear to be one large dataset (e.g. annual).

NOTE: if this directory does not exist it will need to be created and permissioned correctly
for PyNEMO to run properly. The NCML file details the input files to aggregate and what the variable
names are. This file can be generated using the ncml_generator, with variable names found using the
CMEMS catalogue https://marine.copernicus.eu/.
For more information, please read the ncml generator page.

NOTE: A NCML file must be used and it also must use a regular expression. The CMEMS downloader
uses this regular expression to determine what grid a given variable is part of e.g. temperature and
salinity on the T grid. The example CMEMS.ncml file includes: an implementation of how to define
temperature, SSH and U and V components of ocean currents.

Within the I/O and NCML section of the namelist config file, the string "sn_fn" defines the prefix for
the output files. The number "nn_fv" defines the fill value, and the number "nn_src_time_adj"
defines the source time adjustment. The rest of the boxes are CMEMS specific and are explained in
sections 3.2.2 to 3.2.5.

3.2.2 Data Source Configuration

The first section defines the CMEMS data source configuration. The boolean "ln_use_cmems" when set
to true will use CMEMS data as defined in the NCML file. On its own this flag just tells PyNEMO that
the user wants to use CMEMS and that it is present as defined in the NCML file. If it is not present then
the user needs to download the data using the CMEMS downloader, see section 3.2.3 If a user is using
CMEMS data this flag should always be set to true.

3.2.3 MOTU Configuration

In the next section when set to true "ln_download_cmems" will download the boundary tracer data,
e.g. time series of temperature and salinity. When set to false PyNEMO will skip this download. The
string "sn_cmems_dir" defines where to save these downloaded files. PyNEMO requires grid data, this
isn't possible to download using the same method as the tracer data which uses the MOTU python
client. To get the grid data, an ftp request is made to download the global grids which are then subset
to the relevant size. The Booleans "ln_downlad_static" and "ln_subset_static" determine
this behaviour. Finally, there is an integer named "nn_num_retry" which defines the number of times
to retry downloading the CMEMS data. The data connections are prone to failure so if
a noncritical error occurs the function will automatically try to redownload. This int defines how many
times it will try to do this. Typically, this static data and subsetting are only required once so these can
be set to true for first download and then set to false when more time series data is required.
As mentioned previously, the time series boundary data is downloaded using MOTU, this is
an efficient and robust web server that handles, extracts and transforms oceanographic data. By
populating a configuration file, this can be sent to the MOTU server which will return the requested
data in the requested format. The section CMEMS MOTU configuration sets this up. Most of these
options should not need changing. The location of the MOTU server for CMEMS is defined here, and
the location of the config template file and also the location of the config file to submit. The only
options that should require changing are the model, product and prefix options. These define which
CMEMS model and product to download and the prefix is a user defined string to prefix the downloads.
A catalogue of the CMEMS model and products can be found at https://marine.copernicus.eu/.
Currently PyNEMO has only been tested using the physical global forecast model. The downloader

https://marine.copernicus.eu/
https://marine.copernicus.eu/

6

should be able to download other models and products, but it has not been tested and they are known
issues with other products. For example, the Northwest Atlantic model is not currently compatible due
to differences in how the model variables are stored).

3.2.4 FTP Configuration for Static and Grid files

This section defines the FTP server, the remote directory and which files to download. This should not
require modification unless CMEMS changes the file structure or names on the FTP server. Note: it is
important that the filenames are separated by a space as this is what PyNEMO is expecting. Finally, the
location of CDO executable which should be installed to enable subsetting to occur. This can be found
by running:

$ where cdo

3.2.5 Extent Configuration

Finally the last box, this is where the extent to download is configured, it is up to the user to decide
but it is suggested this is at least 1 degree wider than the destination or child configuration. The depth
range to request is also defined here. This information can be extracted from the CMEMS catalogue.
Once set for a given configuration this will not need to be edited.

3.3 Tide Module

By providing a global tidal model dataset (TPXO and FES are currently supported), PyNEMO can
generate boundary conditions for a NEMO configuration, using a user supplied namelist file.

3.3.1 Namelist options

To use the namelist, it needs to be configured with the required options. These are listed below in
Figure 3:

Figure 3 : Tide Module part of DL module configuration file

7

These options define the location of the tidal model datasets, note this differs depending on model as
TPXO has all harmonic constants in one NetCDF file whereas FES has three separate NetCDF files (one
for amplitude two for currents) for each constant. Extra harmonics can be appended to the clname(n)
list. FES supports 34 constants and TPXO7.2 has 13 to choose from. Other versions of TPXO should
work with PyNEMO but have not been yet been tested.
NOTE: FES dataset filenames must have be in the format of constituent then type - e.g.:

M2_Z.nc (for amplitude)

M2_U.nc (for U component of velocity)

M2_V.nc (for V component of velocity)

If this is not undertaken the PyNEMO will not recognise the files. TPXO data files are specified directly
so these can be any name although it is best to stick with the default names as shown above. So far
the tidal model datasets have been downloaded and used locally but could also be stored on a
THREDDS server although this has not been tested with the global tide models.
Other options include "ln_tide" a Boolean that when set to true will generate tidal boundaries.
"sn_tide_model" is a string that defines the model to use, currently only "fes" or "tpxo" are
supported. "ln_trans" is a Boolean that when set to true will interpolate transport rather than
velocities.

3.3.1 Harmonic output checker

There is an harmonic output checker that can be utilised to check the output of PyNEMO with a
reference tide model. So far the only supported reference model is FES but TPXO will be added in the
future. Any tidal output from PyNEMO can be checked (e.g. FES and TPXO). While using the same
model used as input to check output doesn't improve accuracy, it does confirm that the output is within
acceptable/expected limits of the nearest model reference point.
There are differences as PyNEMO interpolates the harmonics and the tidal checker does not, so there
can be some difference in the values particularly close to coastlines.
The checker can be enabled by editing the following in the relevent bdy file:

ln_tide_checker = .true. ! run tide checker on PyNEMO tide output

sn_ref_model = 'fes' ! which model to check output against (FES only)

The boolean determines if to run the checker or not, this takes place after creating the interpolated
harmonics and writing them to disk. The string denotes which tide model to use as reference, so far
only FES is supported. The string denoting model is not strictly needed, by default FES is used.
The checker will output information regarding the checking to the NRCT log, and also write an
spreadsheet to the output folder containing any exceedance values, the closest reference model value
and their locations. Amplitude and phase are checked independently, so both have latitude and
longitude associated with them. It is also useful to know the amplitude of a exceeded phase to see
how much impact it will have so this is also written to the spreadsheet. An example output is shown
below, as can be seen the majority of the amplitudes, both the two amplitudes exceedances and the
ones associated with the phase exceedances are low (~0.01), so can most likely be ignored. There are
a few phase exceedances that have higher amplitudes (~0.2) which would potentially require further
investigation. A common reason for such an exceedance is due to coastlines and the relevant point
being further away from an FES data point.

3.3.2 Tide Checker Example Output for M2 U currents

The actual thresholds for both amplitude and phase are based on the amplitude of the output or
reference, this is due to different tolerances based on the amplitude. e.g. high amplitudes should have

8

lower percentage differences to the FES reference, than lower ones simply due to the absolute amount
of the amplitude itself, e.g. a 0.1 m difference for a 1.0 m amplitude is acceptable but not for a 0.01 m
amplitude. The smaller amplitudes contribute less to the overall tide height so larger percentage
differences are acceptable. The same also applies to phases, where large amplitude phases have little
room for differences but at lower amplitudes this is less critical, so a higher threshold is tolerated.
The following power functions are used to determine what threshold to apply based on the reference
model amplitude.
Table 1. Macro for implementing amplitude and phase thresholds

3.3.3 Amplitude threshold

Important
Percentage Exceedance = 26.933 * Reference Amplitude ^ -0.396'

3.3.4 Phases threshold

Important
Phase Exceedance = 5.052 * PyNEMO Amplitude ^ -0.60

3.3.5 Future work

Create options of harmonic constants to request rather than manually specifying a list. These could be
based on common requirements and/or based on the optimal harmonics to use for a specified time
frame.

3.4 Unit Test Module

To test operation of the PyNEMO module, running the PyTest script in the unit tests folder will perform
a range of tests on different child grids, e.g. checking the interpolation of the source data on to the
child grid. To do this the following command is required :

 $ pytest -v pynemo/pynemo_unit_test.py

The results of the test will show if all tests pass or the errors that result from failed tests.

There are 7 tests that cover checking the interpolation results of different child grids. The input data is
generated as part of the test and is removed afterwards. The number of tests can be increased easily
in the future if required.

3.5 NCML templates: use with other models and data sources

Up until now, PyNEMO was only compatible with defined inputs e.g. CMEMS and produced output
that was only compatible with the NEMO model. Now PyNEMO accepts NCML files which can be
configured so that different inputs can be used or the data is written out in a format suitable for a
different model (e.g. FVCOM).
Examples have been included in the inputs folder on the GitHub repo, these include, local directory,
THREDDS server, and CMEMS that uses the integrated downloader. Within the pynemo directory there
are NCML output files that define the output NetCDF. These can be modified to create output files
suitable for other models. This has not yet been widely tested but new NCML files will be added to
repository as new model templates are created.

9

3.5 Intergration with DIAS/WEkEO (Future Plans)

PyNEMO is currently designed to be installed locally and run from a local python installation.
Alternatively, it could also be installed on a HPC (e.g. ARCHER2) and run there. However, this can be
quite a convoluted process, e.g. Java Runtime is required as is a python package manger such as
CONDA.
To minimise this for end users, it would be beneficial to integrate PyNEMO into the operations
interface. This would allow PyNEMO to be preinstalled and utilised by users without them needing to
setup, install or config PyNEMO or download any CMEMS data to their system. Users could upload
their NEMO configuration files (or provide openDAP links) and then run PyNEMO resulting in NEMO
forcing file that could be then downloaded and used for NEMO simulations.

Alternatively, a docker image could be provided with PyNEMO already installed, the docker framework
has already been used to make NEMO portable across different systems and the same process can be
applied to the tools required to build the models. If Docker is installed, users could just pull the relevant
container from an online repository and have PyNEMO ready to go on their system.

3.6 Example Northwest European Shelf
The GitHub repository https://github.com/NOC-MSM/PyNEMO/tree/IMMERSE contains an example
input configuration, the NEMO configuration files are available on openDAP links and the boundary
data can be downloaded using CMEMS downloader.

Figure 4 : Boundaries of Northwest European Shelf example.

https://github.com/NOC-MSM/PyNEMO/tree/IMMERSE

10

Once PyNEMO is installed, (see online documentation
https://pynemo.readthedocs.io/en/latest/index.html) then the example will need some edits to the
namelist file that configures PyNEMO. The options that need changing are the directory paths to
match where PyNEMO is installed on the system. Here is the relevent part of the namelist file. Lines
that need changing are highlighted in yellow.
!--

! I/O

!--

 sn_src_dir = '/Users/thopri/Projects/PyNEMO/inputs/CMEMS.ncml' !

src_files/'

 sn_dst_dir = '/Users/thopri/Projects/PyNEMO/outputs'

 sn_fn = 'NNA_R12' ! prefix for output files

 nn_fv = -1e20 ! set fill value for output files

 nn_src_time_adj = 0 ! src time adjustment

 sn_dst_metainfo = 'CMEMS example'

!--

! CMEMS Data Source Configuration

!--

 ln_use_cmems = .true.

 ln_download_cmems = .true.

 sn_cmems_dir = '/Users/thopri/Projects/PyNEMO/inputs/' !

where to download CMEMS input files (static and variable)

 ln_download_static = .true.

 ln_subset_static = .true.

 nn_num_retry = 4 ! how many times to retry CMEMS download

after non critical errors?

!--

! CMEMS MOTU Configuration (for Boundary Data)

!--

 sn_motu_server = 'http://nrt.cmems-du.eu/motu-web/Motu'

 sn_cmems_config_template =

'/Users/thopri/Projects/PyNEMO/pynemo/config/motu_config_template.ini'

 sn_cmems_config =

'/Users/thopri/Projects/PyNEMO/pynemo/config/motu_config.ini'

 sn_cmems_model = 'GLOBAL_ANALYSIS_FORECAST_PHY_001_024-TDS'

 sn_cmems_product = 'global-analysis-forecast-phy-001-024'

 sn_dl_prefix = 'subset'

!--

! CMEMS FTP Configuration (for Static Files)

!--

 sn_ftp_server = 'nrt.cmems-du.eu'

 sn_static_dir =

'/Core/GLOBAL_ANALYSIS_FORECAST_PHY_001_024/global-analysis-forecast-phy-

001-024-statics'

 sn_static_filenames = 'GLO-MFC_001_024_coordinates.nc GLO-

MFC_001_024_mask_bathy.nc GLO-MFC_001_024_mdt.nc'

 sn_cdo_loc = '/opt/local/bin/cdo' ! location of cdo

executable can be found by running "where cdo"

!--

https://pynemo.readthedocs.io/en/latest/index.html

11

! CMEMS Extent Configuration

!--

 nn_latitude_min = 40

 nn_latitude_max = 66

 nn_longitude_min = -22

 nn_longitude_max = 16

 nn_depth_min = 0.493

 nn_depth_max = 5727.918000000001

Next stage is to check the flags to download CMEMS data, as this is only required once but PyNEMO
maybe run multiple times it is set to false by default. The flags are highlighted in red, in the example
above there are three flags. One to download boundary data, one to download the grid (static) data
and one to subset the static data, as the static data cannot be downloaded as a subset unlike the
boundary data. So a user would initially set all three to true then on subsequent runs the static data
flags can be set to false. If the user wanted to use same boundary data (i.e. same time period) then the
download CMEMS would also be set to false.
Note: To use the CMEMS download service an account needs to be created at
http://marine.copernicus.eu/services-portfolio/access-to-products/ Once created the user name and
password need to be added to PyNEMO. To do this a file with the name CMEMS_cred.py in the
pynemo/utils folder needs to be created with two defined strings one called user and the other called
pwd to define the username and password. i.e.

$ touch pynemo/utils/CMEMS_cred.py

$ vim pynemo/utils/CMEMS_cred.py

user='username goes here'

pwd='password goes here'

exit and save

Once namelist is setup the boundary data can be downloaded using the following command (user
should be in main PyNEMO directory:

$ pynemo -d inputs/namelist_cmems.bdy

The command prompt will show a spinning globe to show the downloader is running, a detailed log is
saved to NRCT.log in the PYNEMO directory.

Once complete PyNEMO itself can be run with the following command:

$ pynemo -s inputs/namelist_cmems.bdy

This again will show a spinning globe with a detailed log appended to the download CMEMS log. The
user may have to create the output directory in the location it is expecting - i.e., from the main PyNEMO
directory.

$ mkdir outputs

These files can then be used to force a Northwest European Shelf model, (config links can be found in
the namelist).

http://marine.copernicus.eu/services-portfolio/access-to-products/

12

4. Research-to-Operations Interface and deployments on WEkEO

(InterNEMO)

4.1 Introduction
Thanks to developed prototypes (whose first release is part of the IMMERSE MS20 – Coupler tools
released for community testing), T7.3 designed the interfaces and connections with WEkEO for the
usage of CMEMS products to support model developments and assessment. It is called InterNEMO –
Interfaces for NEMO and allows for 3 main scopes:
1. to access and discover the CMEMS catalogue, including both model and observational data.
2. to manipulate accessed datasets to extract relevant physical information for a new NEMO-based

configuration.
3. to prepare NEMO set of upstream files and to validate NEMO solution by using CMEMS

observational datasets.
InterNEMO implements also technologies to connect a NEMO user to WEkEO DIAS for the
interoperable accessing and processing of CMEMS data.
Considering the high dynamical evolution of technologies – including WEkEO – InterNEMO adopts
Continuous Development and Continuous Integration approach: prototypes (source codes) are
ingested according to integration requirements and transformed into a release, ready for testing and
staging. Developments of interfaces and integrations for WEkEO are the baseline of IMMERSE
Research-to-Operations component. Its core is represented by:

• Access Module: a set of drivers for the access and the discovery of the CMEMS catalogue,
including modelling and observational products.

• Process Module: a set of numerical procedures for data manipulation (e.g., visualization,
subsetting, timeseries selection).

• Data Analysis Module: it is an evolution of the proposed Boundary Module, coming from
revision of requirements and integration of numerical procedures for facilitating the setup of
new NEMO-based configurations and for evaluating the quality of numerical results.

Two kinds of interfaces have been implemented and generalized withing T7.3:

• Standalone interface related to user-oriented procedures. A common user, through CMEMS
credentials, enters the CMEMS website and select relevant/useful information

• Advanced interface, representing an evolution of the standalone interface, encompassing
automatic data access through WEkEO by using Harmonized Data Access API.

An overall scheme of interfaces and modules is available on Figure 5.
Such functionalities are implemented and run through Jupyter Notebook, with user-friendly GUI and
exploiting advanced Python-based libraries for visualization, analysis and data retrieval.
InterNEMO is available on https://github.com/CMCC-Foundation/immerse and soon it will be cloned
on https://github.com/immerse-project/.

4.2 Software Architecture Design
The whole software architecture has been designed and developed by exploiting the features offered
by the Model-View-Controller (MVC) design pattern. It is one of the oldest architectural patterns for
web applications. As the name suggests, the MVC Design Pattern is used to separate the logic of
different layers of a program in three independent units: the Model, the View and the Controller. This
is known as the principle of Separation of Concern.The three components of the MVC pattern are
responsible for different things:

• the Model manages the data and defines rules and behaviors. It represents the business logic
of the application. The data can be stored in the Model itself or in a database (only the Model
has access to the database).

https://github.com/CMCC-Foundation/immerse
https://github.com/immerse-project/

13

• the View presents the data to the user. A View can be any kind of output representation: a
HTML page, a chart, a table, or even a simple text output. A View should never call its own
methods; only a Controller should do it.

• the Controller accepts user’s inputs and delegates data representation to a View and data
handling to a Model.

Since Model, View and Controller are decoupled, each one of the three can be extended, modified and
replaced without having to rewrite the other two. As general rule, making independent models and
views makes code organization simple and easy to understand and keeps maintenance easier. To
further easy Model component development, the Intake Python library
(https://intake.readthedocs.io/en/latest/quickstart.html) has been used. It decouples data access
from business logic development. Intake has been designed as a simple layer over other Python
libraries to provide a consistent API that simplifies different data loading and investigation. It provides
a set of data loaders (Drivers) with a common interface, which allow to investigate or load different
kind of data with the exact same call, and turning them into well-known data structures, such as arrays
and data-frames. A programmer can easy design new drivers to cover specific needs. In this project,
three different drivers have been developed to manipulate Nemo-based data, SST data and Mooring
data as will be introduced in the next sections. A YAML Catalogue is used for listing such data sources.
It contains information about metadata and parameters and referencing which of the Drivers should
load each. The View component has been developed by making an extensible use of Python
ipywidgets. They simplify the implementation of interactive GUI for Jupyter Notebook, by improving,
at the same time, the User Experience making the notebook easily usable also for not-expert users.

Figure 5: InterNEMO: modules, prototypes and interfaces

4.3 Access Module
The Access Module (AM) provides steps and tool for discovering the CMEMS catalogue, available at
https://marine.copernicus.eu/ and on WEkEO DIAS.
InterNEMO supports 2 different implementations:

- One for the standalone version, based on MOTU Client service

- One for the WEkEO DIAS

https://intake.readthedocs.io/en/latest/quickstart.html
https://marine.copernicus.eu/

14

4.3.1 Standalone version

It is based on MOTU Client service for the data retrieval and it is implemented through a Jupyter
Notebook “access_module.ipynb” that recalls ad-hoc libraries for interfacing the user with CMEMS
catalogue. In Italic an example is provided to demonstrate the main functionalities.
The main steps to access CMEMS data via Jupyter Notebook are:

1. Logging to CMEMS webportal using personal credentials

2. Catalogue Loading: at the moment, the AM is interfaced to IBI-MFC, Med-MFC and BS-MFC

near real time datasets. Once the dataset is selected, the user may submit the request for

loading it (for example, we select the IBI-PHY analysis and forecast product and daily forecast

dataset)

3. Visualize Product Metadata: as part of the interactive search-and-discovery functionality, once

the dataset is loaded, the user may visualize the metadata information – variables,

coordinates, available time period – in order to further refine the access/selection (considering

the daily forecast dataset, available variables are 3D temperature, salinity and currents and 2D

bottom temperature, mixed layer depth and sea surface height. For available variables, the

system shows the coordinates and available temporal period)

15

4. Download File: the user may select her/his own custom dataset – subsetting in space and time

– and proceed with the download of the dataset (in the example, we select just surface

temperature fields up to 10m over 1 week period – from 01/07/2020 to 07/07/2020, and the

file is downloaded once the user selects it. The output file is saved in a NetCDF file called

“out_ibi.nc”)

4.3.2 WEkEO-based version

It is based on integrated API to use WEkEO service for the data retrieval and it is implemented through
a Jupyter Notebook “access_module_WEkEO.ipynb” that recalls ad-hoc libraries for interfacing the
user with CMEMS catalogue. In Italic an example is provided to demonstrate the main functionalities.
The main steps to access CMEMS data through WEkEO via Jupyter Notebook are:

1. Importing Modules: the core for the interface is AMController, which implements Harmonized

Data Access API via notebook in an automatic way (i.e., bypassing the user’s need to download,

integrate and execute the provided API via WEkEO)

2. Load and Visualize Product Catalogue: it performs the same steps as in the standalone version,

but accommodating WEkEO requirements. The AMController returns the list of services and

products as configured to the user, which may select an load the preferred ones (in this case,

16

we selected the Mediterranean Sea Analysis and Forecasting Physical product and

corresponding monthly mean dataset for temperature. The code returns also the short

description as available in the CMEMS catalogue)

3. Logging using WEkEO credentials: once the user has selected the preferred dataset, before

proceeding he/she needs to insert the WEkEO credentials (they can be created though

https://www.WEkEO.eu/web/guest/user-registration) (in the example, we used our

credentials: you should include yours once created on WEkEO, otherwise the system does not

allow you to download any dataset)

4. Discovering and download the product: the controller implements additional functions for

visualizing dataset metadata. In particular, the used API allows for visualizing specific

information for provided dataset, such as bounding box, temporal data range, list of variables

and list of depths (for 3D variables) (in this case, it is just visualized the bounding box of the

Mediterranean Sea product; then, the user may set a specific bounding box to perform the

subsetting in space and time for the selected variables)

https://www.wekeo.eu/web/guest/user-registration

17

The download is launched once the user specifies the preferred bounding box, temporal

coverage, layer and variable(s):

To verify the correctness of the download process, the run process returns a list of messages,

including estimation of the file size, processing time and status

4.4 Process Module
The Process Module (PM) implements some basic functionalities for map visualization and data
analysis (at the moment, min, max and mean functions). It is interfaced to AM - both versions as
introduced in the previous section - through the output NetCDF file the user built for her/his own
purpose. It is implemented in the Jupyter Notebook “process_module.ipyn”. In Italic an example is
described to help the user in the first execution.
Steps to visualize and manipulate CMEMS data are the following:

1. Importing Modules: the core for the interface is PMController, which implements functions for

easily interface the notebook to standalone or WEkEO-based data access, including R&D

products, running in an automatic way:

2. Select file: the user may select the accessed file previously downloaded though the AM (in the

case of the example, it is so.nc, which is the salinity field for the Black Sea)

18

3. Plotting and Manipulating the available dataset: the user may load the NetCDF file in a

predefined way or she/he may ask for the plot of minimum or maximum or mean. Visualization

is integrated using hvplot function, that allows interaction with the 2D map to get the spatial

value of the selected variable and the possibility to scroll over the available temporal period

(the Black Sea domain is shown, with average salinity over the selected period. The balloon

shows a selected point and corresponding salinity value). This function can be used also for

setting initial conditions and boundary conditions for a NEMO-based configuration.

Recently, the possibility to plot the timeseries of the selected variable over a specific period

and at a specific depth has been included. Also the timeseries is managed through hvplot (in

the example, we are plotting the salinity for the Black Sea at about 2.5 m – first level – over the

period 03/03/2021 to 05/03/2021).

19

4. Save variable in a NetCDF file: the user may save the selected/manipulated variable in a new

NetCDF file to further process/use it

4.5 Data Analysis Module
With respect to release v0 – Aug 2020, InterNEMO is now able to support additional functionalities for
the analysis of data a) from CMEMS or b) from R&D based on NEMO for setting a new configuration as
supported by PyNEMO (as described in Section 3) and for the assessment of the numerical results. The
latter functionality completes the offer of the prototype in terms of usage of accessed data through
the AM. To demonstrate the capacity in using accessed data, a validation exercise has been
implemented and made available to user. Dedicated notebooks have been implemented for
performing the evaluation of model results against SST satellite observations and INS data from
moorings, both available in the CMEMS catalogue. To access local available data, once downloaded,
Intake Python library is used: the user, via configuration file, may easily provide general description of
relevant datasets to analyse (in the example reported in the following, the user specifies the object
“sst”, represented by L3S GHRSST nighttime subskin SST for the Black Sea, whose data are available in
the CATALOG_DIR, and the object “model_operational” which is the NEMO native data for the Black
Sea Physics Analysis and Forecasting System as delivered through CMEMS):

20

Figure 6 : Example of catalog.yaml used by the Data Analysis Module

4.5.1 Evaluating SST

A dedicated Jupyter Notebook has been implemented with the scope to perform a comparison
between NEMO-based native data results and SST from satellite observations (LS3). This template can
be easily adapted for performing other kind of comparisons including biogeochemistry and waves
products. Provided example is for the Black Sea physical model product.
Steps are:

1. Configuration of the catalog.yaml file as previously introduced

2. Import modules, load data from the product catalogue and compute metrics: as for AM and

PM, also in this case a SSTController has been implemented to collect libraries and procedure

as needed for the validation exercise. In the step 2 – Load and Visualize Product Catalogue –

the user specifies the source from observations “sst” and from model “model_operational” as

provided in the configuration file. Implemented metrics are BIAS and RMSE (CLASS4 metrics).

3. Visualizing the results: using hvplot library, the notebook allows for visualizing computed

metrics as 2D maps averaged over the reference period and also as timeseries over the

reference period.

21

4.5.2 Evaluating T and S though INS mooring data

A dedicated Jupyter Notebook has been implemented with the scope to perform a comparison
between NEMO-based native data results and temperature and salinity from INS observations. This
template can be easily adapted for performing other kind of comparisons including biogeochemistry
and waves products. Provided example is for the Black Sea physical model product.
Steps are:

1. Configuration of the catalog.yaml file as previously introduced

2. Import modules, load data from the product catalogue and compute metrics: as for AM and

PM, also in this case a MOController has been implemented to collect libraries and procedure

22

as needed for the validation exercise, including the reading of the mooring data. In the step 2

– Load and Visualize Product Catalogue – the user specifies the source from observations

“EUXRoO1” and from model “model_operational” as provided in the configuration file. The

user must specify also start and end date of the validation exercise. Implemented metric is

CLASS2 based, so overlapping of model and observation timeseries. The example refers to a

station in the Black Sea Western basin and comparison is done against analysis field from the

Black Sea Analysis and Forecasting system.

3. Display timeseries: a visualization of the timeseries for temperature and salinity from the Black

Sea model against observed data at the nearest observation location is provided using hvplot.

5. Conclusions
In this report, we presented implementations of new Python coupling developed within T7.3 of
IMMERSE project to support users in the research community in setting and assessing new NEMO-

23

based configurations using CMEMS product catalogue (model and observation products). Toolkits have
been developed progressively from a research-oriented approach (pyNEMO) to a research-to-
operations approach (InterNEMO) for the definition of generic interfaces with CMEMS products.
pyNEMO is a Python-based tool that helps to build a NEMO regional configuration, allowing for a)
generation of open boundary conditions, b) usage of local or remote data sources (e.g., CMEMS via
MOTU or standalone models like FES and TPXO). A unit testing approach is implemented in order to
test module functionality, helping in the development and integration phase. Starting from the
consolidated experience of pyNEMO, a generalized approach to access and use CMEMS data for
NEMO-based model developments has been developed with InterNEMO. It is a Python-based suite
that consists of 3 modules: a) Access Module for accessing and discovering CMEMS catalogue via
CMEMS services (e.g., MOTU) and via WEkEO DIAS; b) Process Module, to manipulate accessed dataset
including coastal ocean data, c) Data Analysis Module that performs preparation of upstream dataset
for NEMO-based configuration and perform validation exercises. InterNEMO generates automatically
the API request, using the Harmonized Data Access API function provided by WEkEO DIAS and JSON
parser. This is part of the new functionality implemented within the Access Module to have a)
centralized access point for CMEMS data, b) integrated Python-based codes and libraries to use for
generalized interfaces, c) to exploit easy deployments of numerical procedures thanks to Model-View-
Controller approach and d) easy transfer from R&D to operational environment thanks to flexible
interfaces able to perform processing and data analysis. For these reasons, future works will be
dedicated to strength pyNEMO capacity within the WEkEO DIAS framework to demonstrate impact of
NEMO and CMEMS evolutions on downstream studies, which will be one of the major objective within
WP8.

6. References
• Copernicus Marine Environment and Monitoring Service: https://marine.copernicus.eu/
• WEkEO DIAS: https://www.WEkEO.eu/
• Harmonized Data Access API: https://www.WEkEO.eu/web/guest/hda-api
• InterNEMO: https://github.com/CMCC-Foundation/immerse
• PyNEMO: https://github.com/NOC-MSM/PyNEMO/tree/IMMERSE
• IMMERSE H2020 Project: https://immerse-ocean.eu/

https://marine.copernicus.eu/
https://www.wekeo.eu/
https://www.wekeo.eu/web/guest/hda-api
https://github.com/CMCC-Foundation/immerse
https://github.com/NOC-MSM/PyNEMO/tree/IMMERSE
https://immerse-ocean.eu/

